統合化推進プログラムの歩みと今後の課題

九州大学 生体防御医学研究所 伊藤 隆司

統合化推進プログラム(DICP):これまでの歩み

● 2011年に第1期が開始

データベースの分野別・目的別統合化、ならびに散在しているデータベースの統合化を 目的に発足

過去3期で計31課題を支援

● 2022年から第4期が開始

「つなぐ」から「使う」へ

広範なユーザーの知識発見の支援 国際的プレゼンス

新しい動向への対応

育成型を2023年から開始 現在17課題を支援中

研究アドバイザー

鎌田	真由美	北里大学 未来工学部 教授
坂井	寛章	農業・食品産業技術総合研究機構 高度分析研究センター ユニット長
清水	佳奈	早稲田大学 理工学術院 教授
瀬々	潤	(株) ヒューマノーム研究所 代表取締役社長
馬場	健史	九州大学 生体防御医学研究所 主幹教授
山本	一夫	お茶の水女子大学 ヒューマンライフサイエンス研究所 客員教授
吉田	哲郎	アクセリード(株) 経営企画部 シニアディレクター

(2025年6月現在;五十音順に掲載)

DICP:現在支援中の本格型8課題

2022年度採択(本格型)

- ハイオイメージングデータのグローバルなデータ共有システムの構築
 - ≥ 大浪修一
- > 統合的な転写制御データ基盤の構築
 - 2 粕川雄也
- > ヒトゲノム・病原体ゲノムと疾患・医薬品をつなぐ統合データベース
 - ≥ 金久實
- > 異分野融合を志向した糖鎖科学ポータルのデータ拡充と品質向上
 - ▲ 木下 聖子
- > 蛋白質構造データバンクのデータ駆動型研究基盤への拡張
 - ₹ 栗栖 源嗣
- > マイクロバイオーム研究を先導するハブを目指した微生物統合データベースの特化型開発
 - 🙎 森宙史

2023年度採択(本格型)

- [>] jPOST prime:コミュニティ連携を基盤とするプロテオームデータベース環境の実現
 - ≥ 石濱泰
- [>] 次世代低分子マススペクトルデータベース シン・マスバンクの構築
 - ≥ 松田 史生

SSBD:database

DICP:現在支援中の育成型9課題

2023年度採択(育成型)

- > 非モデル植物のための遺伝子ネットワーク情報活用基盤
 - ≥ 大林 武
- [>] 日本人塩基配列情報の公開可能なゲノム・オミクス情報基盤による双方向型研究教育データベース開発と 国際連携
 - 🙎 長﨑 正朗
- 空間オミックスデータ解析用データベースの開発
 - VANDENBON Alexis

2024年度採択(育成型)

- › AI駆動型データキュレーションによる持続可能な中分子相互作用統合データベースの開発
 - ▲ 池田 和由
- > 細胞レベルの機能・表現型と遺伝子発現を関連付ける「Cell IO」データベースの開発
 - ₹ 尾崎 遼
- [>] 創発的再解析のためのメタボローム統合データベース
 - ₹ 早川 英介

2025年度採択課題 🐨 ご紹介はこの後すぐ

JoGo

DeepSpaceDB

MIIDB-AI

Cell IO

integMET

DICP:今後の課題 — ライフステージに応じたDB支援の複線化

● 萌芽期 試験的支援による発掘・育成 育成型

期待通りの成果見込み

● 発展期 本格的支援による成長・確立 本格型

これまでの確固たる実績

● 円熟期 維持継続が中心の別枠支援? 継続型?

新モダリティ・データの登場に対応できる仕組み?

● 引退後 データの保全

DBアーカイブ

DICP:今後の課題 — 周辺環境への対応と働きかけ

● 新しい動向への対応

バイオデータの質的・量的変容

新しい計測手法による新しいタイプのデータが続々と登場

統合解析に対する要望と期待の高まり

生命科学者は欲張り

AIの急速な進歩

DBの作り方・使い方のみならず、DBの在り方そのものにも大きな影響

● DBを尊ぶ文化の醸成への貢献

評価軸の成熟・複線化

目立つ成果に対する直接的な貢献しか評価できない「想像力の貧困」からの脱却派手なAIの影に地道なDBが隠れてしまうことへの危惧(飲水思源の精神)