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Summary

Metabolomics has advanced significantly, yielding extensive datasets stored in data repositories. However, the full
potential of these data is limited by difficulties in integrating and reanalyzing information from different studies due to
variations in analytical settings. We have been developing a network-based data integration platform integMET, to
reanalyze cross-study metabolomics data. By quantifying similarities in differential metabolite profiles and analyzing
textual metadata, we create a unified network linking metabolic data and scientific concepts. This method enhances data
access and promotes cross-disciplinary scientific advancement.
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Background

Data scientists
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quantification and instrument-dependent signal However, the metadata within these repositories is

iIntensities hinder data comparability. Additionally, often inadequate and lacks standardization. This lack

of comprehensive and uniform metadata makes the
reanalysis and integration of data across networks
challenging.

metabolite detection consistency is impacted by
variations in instrumental settings, affecting cross-
platform data reliability.

Data integration: infeasible
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Results and Discussion
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Study descriptions acquired from repositories were processed with PubTator to
extract key biological entities (MeSH terms) such as diseases, genes,
chemicals, and species. The extracted information serves as a valuable
resource for assessing the data content and diversity within the repository.

This data integration platform is currently under development, along with a web browser-based user interface. The
platform supports large-scale data reanalysis, facilitating the exploration of data to identify novel findings, such as
common metabolic changes across different biological backgrounds

Perspectives and Future Work

We are currently developing the interface for the integrated dataset, with plans to (beta) release it by the end of the current fiscal
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year. Concurrently, to enable comprehensive integration of metabolomics research sources beyond traditional repositories, we

I, MetabolLights

Papers
| | have adopted the community-standard open format mzTab-M for system-wide data management. We will continue to advance this
| database’s development to contribute to the fields of metabolomics and bioinformatics.
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