

DeepSpaceDB: a spatial transcriptomics atlas for interactive

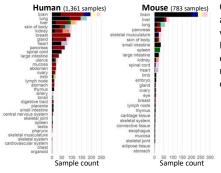
in-depth analysis of tissues and tissue microenvironments
Vladyslav Honcharuk¹, Afeefa Zainab¹, Yoshiya Horimoto^{2,3}, Keiko

E-mail: alexisvdb@infront.Kyoto-u.ac.

Takemoto¹, Diego Diez⁴, Shinpei Kawaoka^{1,5}, Alexis Vandenbon^{1,6*}

¹ Institute for Life and Medical Sciences, Kyoto University; ² Department of Breast Surgery and Oncology, Tokyo Medical University Hospital; ³ Department of Human Pathology, Juntendo University Faculty of Medicine; ⁴ Immunology Frontier Research Center, Osaka University; ⁵ Institute of Development, Aging and Cancer, Tohoku University; ⁶ Graduate School of Biostudies, Kyoto University

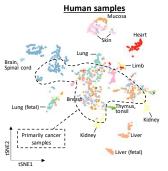
E-mail: alexisvdb@infront.Kyoto-u.ac.jp

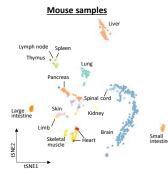


Spatial transcriptomics enables researchers to study the spatial organization of cells and gene expression patterns within tissues. However, this technology requires considerable financial resources and bioinformatics experience. Here, we present DeepSpaceDB (www.DeepSpaceDB.com), a spatial transcriptomics atlas that enables in-depth exploration of public spatial data. The public version of DeepSpaceDB now contains 2,144 Visium samples. We added new tools for comparing between 2 different samples, for searching the whole database with a query gene of interest, and others.

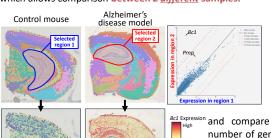
We have also collected and processed >500 Xenium samples. We are currently exploring ways for storing this data and preparing a database interface. This part has not yet been made public.

Overview of Visium data


Version 1.1 of DeepSpaceDB contains 2,144 spatial transcriptomics samples of the 10x Genomics Visium platform from multiple sources.



Our collection includes 1,361 human and 783 mouse samples, covering a variety of tissues and conditions. Human data is especially rich in cancer-related samples, mouse data includes a large number of brain samples.


To evaluate the biological validity of the collection of samples, we converted each tissue slice into a "pseudo-bulk" sample, and visualized these in a 2D embedding. We confirmed that samples from similar tissues group together, even if they were generated by different studies.

New analysis tools

Previously, we implemented a tool that allows users to compare gene expression between freely selected regions within a sample. Recently, we added a new tool which allows comparison between 2 different samples.

Here we show comparison between brains control mouse and an model mouse. Users freely regions of the brain

and compare gene expression. A number of genes, including Bc1 and Prnp, have increased expression in the Alzheimer's disease model. The expression patterns of Bc1 in the two tissue slices is shown.

We have also added tools for inspection of manual image annotations for 69 breast cancer samples and for searching the whole database with a query gene of interest. Users can now also upload and analyze their own Visium data on DeepSpaceDB.

Overview of Xenium data

We collected samples of the 10x Genomics Xenium platform from multiple sources. After processing using a consistent pipeline, 548 Xenium samples remained. We are now conducting preliminary analysis and implementing analysis tools.

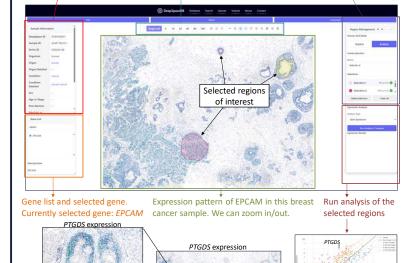
Of the samples, 445 use a small gene panel (between 90 and 500 genes), and 103 are Xenium Prime samples covering about 5,000 genes. Sample annotation is still ongoing, but the most frequent organs and tissues are shown in the tables below.

Mouse samples **Human samples** Lung Brain Brain Kidney Adipose Lung 10 Kidney Nervous system

The number of cells per sample ranged from 919 to 1.7 million (mean: 118,545).

Downloaded data files Processing using spatialdata, spatialdata io, and scanpy Quality control Normalization Dimensionality reduction Clustering Save data in Zarr stores

All samples were processed using a standard pipeline in Python. We attempted binning cells in bins of various sizes to speed up the access to the


Resulting data was stored in various Zarr stores to make it easily and quickly accessible from the database interface.

Xenium interface

Background information about the current sample

Various tools to change the resolution. select regions of interest, etc.

Overview of current selected regions of interest

KRT17 expression Users can plot gene expression in regions of interest. **Future plans**

For Visium samples:

- We will continue regular updates to add newly published Visium samples.
- We are exploring alternative ways for tissue image data segmentation and LLMbased annotation.

For Xenium samples:

- We will add more Xenium samples in the near future, and add functions for inspecting cell types, spatial domains, and spatially variable genes.
- We will prepare a public version of the Xenium database.

We will explore other platforms to include in the database.