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Metabolomics: A Comprehensive Overview of Metabolism
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"Metabolic Network" by BruceMcAdam, CC BY-SA 3.0.

+ Metabolomics enables the detailed analysis of metabolites, providing insights into
metabolic changes across biological systems.
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Genome Epigenome Transcriptome Proteome Metabolome

 Metabolomics lies downstream of the genome, providing insights that are closer
to the phenotype



Metabolomics Data Repositories
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 Metabolomics generates vast amounts of data from numerous samples through
high-throughput mass spectrometry (MS) instruments.
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Metabolomics data repositories are extensively utilized for the storage and
management of metabolomics data.

The volume and diversity of metabolomics data are experiencing rapid growth.

Despite advancements, the reanalysis and integration of metabolomics data remain

challenqging.




Technical Challenges in Data Integration : MS

Data integration: infeasible

Variability in instrumentation creates standardization challenges.

Limited absolute quantification and instrument-dependent signal intensities
impact data comparability.

Metabolite detection varies with instrumental settings, affecting data

consistency across platforms.
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Objective: Advancing Metabolomics Data Integration
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1.Metabolite differential profile-based Integration:

 Employing a differential profile-based approach to integrate metabolomics data,
enabling more precise comparative analysis across different datasets.

2.Metadata-Based Integration:

« Keyword-based data integration to support interpretation of complex metabolome
data sets.

3.Unique Integrated Network for Data Exploration:

* Developing an integrated network platform that facilitates the exploration of vast
metabolomics data, paving the way for novel discoveries and insights.



Differential metabolomic profile-based integration

 iDMET: network-based approach for integrating metabolomics differential analysis
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* Connect studies (differential profiles) based on similarity of metabolic change
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Data Structure of Metabolomics Repository
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Metadata-based integration/filtering
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« Metabolomics data repository hosts diverse studies, each with unique
backgrounds. Difficult to find similarities and connections between

studies.
* We use tools to annotate key biological concepts (diseases, species,

genes and chemicals) in studies.
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g Effects of polymorphisms in the XRCC1, XRCC3, and XPG genes on clinical outcomes of platinum-based ‘
1247375 ly
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Publication: Genetics and molecular research : GMR; 2014 ; 13(3) 7617-25 [Full text links)
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ABSTRACT:
This study aimed to i the effects of singl leotide polymorphisms (SNPs) KRGS Arg194Trp, KRGEH Arg280His, Eﬁ Zo I t g t d N t k
Arg399G Thr241Met, KBl His104Asp, and His46His in genes involved in the DNA-repair pathway on ’I'X n e ra e e wo r

the outcomes of im-based chemotherapy in patients with advanced non=small cell lung cancer (NSCLC). The study period
was from January 2005 to January 2006, and 378 NSCEC patients were enrolled within 1 month after being diagnosed with
NSCEC. Genomic DNA was extracted using the Qiagen Blood Kit. Polymerase chain reaction combined with a restriction

fragment length polymorphism assay was used for genotyping. Individuals with the KR 399A/A genotype had a higher
probability of responding well to BIAGRUR-based chemotherapy, indicated h\ an odds ratio (OR) of 2.27 [95% confidence
interval (CI)=1.64-6.97). Similarly, the XPGT/T ype was si iated with imp: P to
chemotherapy, indicated by an OR of 1.90 (95%Cl=1. 10-328). The - 399A/A genotype was si iated with

longer disease-free survival and overall survival, indicated by hazard ratios (HRs) of 0. 48 (95%C1=0.25-0. 88) and 0.51
(95%CI1=0.26- 0.98), respectively. Moreover, the ype increased the likelihood of longer disease-free survival
and overall survival of NSCLC patients treated with sed chemotherapy (HR=047; 95%CI=0.22- () 82 and HR=0.52;
95%CI=0.31- 096, ruspctuvul)) These results indicate that - Arg399GIn and K His46His might significantly affect
the clinical outcomes of PIBIMUM-based chemotherapy, highlighting the need for larger studies to confirm the role of these two

Simmons et al. Adv Exp Med Biol. 2016;939:139-166.
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Differential profile-based integration
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Data Reanalysis with integrated network
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Enhanced Utilization of Integrated Metabolomics Networks

Constructing Knowledge Graphs from

Integrated Metabolomics Data
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Leveraging Knowledge Graphs for Advanced Insights and Predictions
Enabling Efficient Data Integration and Utilization in Metabolomics
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Future Outlook:
Al-Driven Study Creation Through Integrated Metabolomics Graph
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* Cross-Study Hypothesis Creation
By identifying patterns in metabolic changes between connected studies, we can
generate initial hypotheses for further investigation.

* Al-Driven New Study Design
Al-suggests relevant analyses and methodologies, autonomously creating new
scientific study designs based on the provided metadata.

* Accelerating Scientific Discovery
Al systematically and autonomously creates scientific study designs, dramatically
shortening the time between data analysis and new research conception, enabling
rapid scientific progress.
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* Integrate large metabolome datasets to enables a holistic view of
metabolic processes, enhancing our understanding of complex
biological phenomena.

* This unique network-based platform significantly contributes to the
metabolomics/science community by simplifying and enhancing
accessibility for data reanalysis
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