

トーゴーの日シンポジウム2020

Oゲルフィ アンドレア¹, 中村保一², 磯部祥子¹ 1. かずさDNA研究所、2. 国立遺伝学研究所

要旨 (Abstract)

KusakiDB is a database of protein orthologous groups (OGs) that provides an assessment and management tool for comparison of OGs in plant species. KusakiDB correlates the information of three important databases, OrthoDB, UniProt and RefSeq. It introduces a validation tag that is based on the existence of at least one protein in each OG which is an attempt to address the problem of error propagation. KusakiDB was used as a database to re-annotate plant gene sequences registered in Plant GARDEN (https://plantgarden.jp) by using Hayai-Annotation (Ghelfi et al., 2019).

背景 (Background)

- Plants have quite a low coverage in the major protein databases despite their large number of species (roughly 350,000), and environmental and economic impacts. To explain the latter, two important global meetings can be cited, first the Paris Agreement (2015), which established a process toward stabilizing greenhouse gas concentrations; second, the Global Bioeconomy Summit (Berlin, 2018), that identified Bioeconomy as a transformative strategy for advancing a Sustainable Development Goals.
- Furthermore, agricultural sector is one of the main industrial sectors in bioeconomy (FAO, 2016). In the European Union and US together biology-based industries (non-food) accounted for 21 million jobs and generated more than US\$ 2.57 trillion annually (El-Chichakli et al., 2016).
- Besides, misannotation of molecular function in public databases continues to be a significant problem (Schnoes et al., 2009).
- We have developed KusakiDB, which provides a validation tag of orthologous groups, besides presenting an assessment and management tools to evaluate orthologous groups at a family level in 117 plant species. This is an attempt to enrich information regarding physical evidence of a protein or transcript at each OG and implement different methods of comparison of OG within plant species.

KusakiDB v1.0: Overview of the Integration of Three Major Databases

KusakiDB v1.0: Distribution of Entries by Validation Tag (and source of validation)

KusakiDB Distribution of Unique Genes by Taxonomic Level

Class name	Frec
Liliopsida	1087012
Chlorophyceae	70925
Trebouxiophyceae	39775
Mamiellophyceae	36454
Bryopsida	25987
Marchantiopsida	19969
Lycopodiopsida	19271
Klebsormidiophyceae	10510
Polypodiopsida	7111
Ulvophyceae	3283
Charophyceae	2528
Chlorodendrophyceae	2342
Jungermanniopsida	2212
Zygnemophyceae	859
Sphagnopsida	630
Chloropicophyceae	623
Palmophyllophyceae	222
Pedinophyceae	214
Coleochaetophyceae	190
Nephroselmidophyceae	164
Anthocerotopsida	156
Haplomitriopsida	152
Mesostigmatophyceae	112
Tetraphidopsida	107
Chlorokybophyceae	105
Leiosporocerotopsida	92
Takakiopsida	78
Polytrichopsida	77
Andreaeopsida	45
Oedipodiopsida	5
Andreaeobryopsida	2

Family name	Freq
Poaceae	895154
Fabaceae	445629
Brassicaceae	330293
Solanaceae	247768
Malvaceae	209291
Rosaceae	140723
Asteraceae	107538
Euphorbiaceae	69146
Salicaceae	63484
Musaceae	62050
Rutaceae	52798
Vitaceae	52778
Cannabaceae	42169
Papaveraceae	41706
Cucurbitaceae	41565
Orchidaceae	41383
luglandaceae	40649
Lythraceae	38640
Lamiaceae	37716
Arecaceae	31936
Convolvulaceae	31720
Ranunculaceae	31585
Chlorellaceae	31420
Myrtaceae	29734
Nelumbonaceae	28769
Bignoniaceae	27813
Actinidiaceae	26681
Funariaceae	23999
Apiaceae	23105
Chlamydomonadaceae	22913
Chenopodiaceae	22738
Fagaceae	21932
Bathycoccaceae	21625
Volvocaceae	21582
Gesneriaceae	21330
Cephalotaceae	21226
Moraceae	20508
Marchantiaceae	19606
Phrymaceae	19415
Selaginellaceae	18551
Rubiaceae	18482
Lauraceae	18162
Rhizophoraceae	17620
Theaceae	17280
Zosteraceae	16866
Mamiellaceae	14759
Bromeliaceae	14669
Amborellaceae	13594
Selenastraceae	12896

cientific name	Freq
riticum turgidum subsp. durum	101329
Aegilops tauschii subsp. strangulata	87055
lordeum vulgare subsp. vulgare	84025
lea mays	75459
riticum aestivum	74894
Nicotiana tabacum	61700
Arachis hypogaea	54760
/itis vinifera	52053
Medicago truncatula	50596
Gossypium hirsutum	50378
Arabidopsis thaliana	48461
Glycine max	48016
Brassica rapa	41679
Gossypium raimondii	41587
uglans regia	40339
Capsicum annuum	40301
Glycine soja	39610
Punica granatum	37961
Gossypium barbadense	37086
Populus trichocarpa	36163
Prunus persica	34870
Panicum miliaceum	34797
alvia splendens	34401
etaria italica	33360
Ielianthus annuus	33352
Brachypodium distachyon	31226
orghum bicolor	30344
Phoenix dactylifera	30090
Manihot esculenta	29934
Aquilegia coerulea	29008
Velumbo nucifera	28728
/igna radiata var. radiata	28725
ucalyptus grandis	28620
Artemisia annua	28240
olanum tuberosum	28192
Dryza sativa Japonica Group	27522
Cicer arietinum	27454
heobroma cacao	27241
Brassica oleracea	26606
Phaseolus vulgaris	26364
Actinidia chinensis var. chinensis	26033
upinus angustifolius	26026
landroanthus impetiginosus	25942
Rosa chinensis	25378
actuca sativa	24758
rifolium subterraneum	24718
Brassica rapa subsp. pekinensis	24379
Malus baccata	24321
hyscomitrella natens	22021

Total: 31 classes

Total: 708 families

Total: 21,617 species

KusakiDB v1.0 Tools: OG assessment

KusakiDB v1.0

A Novel Approach for Validation and Completeness of Protein Orthologous Groups

			OG Assessm	ont OG Managem	ent OG Ma	nagement User	Data Hayai-annota	ation Plants-v2.0		
Select a Family										
from KusakiDB			Choose Family							
			Family Name		_					
			Poaceae		·					
			Or enter Hayai-an	notation output file						
Upload your			Upload Hayai_an	notation_v2.0.tsv						
own data			Browse Ha	yai_annotation_v2.0.t	sv					
annotated by			U	pload complete						
			Submit							
науаі-										
annotation v2.0			User Data							
			Family_name	Species_source	N_of_clusters	kusakiDB_	validated Median_f	Family Total_Far	mily Median_S	Species
lleare data roci	ı.l+•]	Brassicaceae	User_data	13648	98.98	98.98	8	98.98	
KusakiDB pred	licts family and		KusakiDB Comple	ete Genomes Data						
calculate numb	ber of validated		Family_name	Scientific_name	N_	of_clusters	kusakiDB_validated	Median_Family	Total_Family	Median_Species
OGs. median o	of OG within same	ſ	Poaceae	Oryza brachyantha		11801	96.95	90.91	11	83.76
family and ma	dian of OC within		Poaceae	Triticum urartu		10512	91.83	90.91	11	82.91
			Poaceae	Brachypodium dista	achyon	12833	95.11	90.91	11	82.91
all species			Poaceae	Zea mays	-	13021	96.84	90.91	11	82.05
			Poaceae	Oryza sativa Japoni	ca Group	13128	96.95	90.91	11	82.05
			Poaceae	Sorgnum Dicolor	aanthaa	13314	94.88	90.91	11	82.05
			Poaceae	Panicum hallii	sannes	13708	93.45	90.91	11	82.05
	Results of Kusakin	B data	Poaceae	Setaria italica		13190	93.49	90.91	11	82.05
			Poaceae	Aegilops tauschii		15967	80.14	81.82	11	78.63

KusakiDB v1.0 Tools: OG management

Users can select the parameters to compare OGs among all species in KusakiDB, such as:

- Validation tag
- Number of species in each family
- Percentage of species in each family
- Percentage within all species

The results with the selected parameters are shown in two table:

- List of species and number of OGs
- List of protein names and correspondent frequency

KusakiDB v1.0

A Novel Approach for Validation and Completeness of Protein Orthologous Groups

KusakiDB Validation	Total number of species in a fa	mily Percentage of Species in a Family Percentage	of Total Species
 Validated 	5		26
Not validated		1 11 21 31 41 51 61 71 81 91 100 1 11 21	31 41 51 61
Submit			
Download			
List of Species with selected OG	parameters	List of Protein names with selected OG parameters	
Scientific_name	Freq	Protein_name	Fr
Sorghum bicolor	1479	Zinc finger, RING/FYVE/PHD-type	2
Panicum hallii	1470	NAC domain	1
Aegilops tauschii	1460	Peroxidase	
Setaria italica	1453	Transcription factor, MADS-box	1
Oryza sativa Japonica Group	1450	Pentatricopeptide repeat-containing protein	1
Brachypodium distachyon	1405	Bifunctional inhibitor/plant lipid transfer protein/seed storage	helical domain
Zea mays	1355	Heavy metal-associated domain, HMA	
Dichanthelium oligosanthes	1327	Leucine-rich repeat	1
Camelina sativa	1286	Glycosyltransferase	
Arabidopsis lyrata subsp. lyrata	1268	Toll/interleukin-1 receptor homology (TIR) domain	
Capsella rubella	1241	Defensin-like (DEFL) family protein	
Arabidopsis thaliana	1239	F-box domain	
Brassica rapa	1238	Dirigent protein	
Oryza brachyantha	1226	RNA-binding domain superfamily	
Raphanus sativus	1216	CASP-like protein	
Eutrema salsugineum	1188	PPM-type phosphatase domain	
Triticum urartu	947	Pentatricopeptide repeat	
Arabis alpina	757	Protein kinase superfamily protein	

KusakiDB v1.0 Tools: OG management user data

Users can select the parameters to compare OGs among all species in KusakiDB, such as:

- Validation tag
- Number of species in each family
- Percentage of species in each family
- Percentage within all species

Users can upload the functional annotation performed by Hayai-annotation v2.0

The results show a 'filter' of the genes that are selected under the conditions regarding the conservation level of each OG.

KusakiDB v1.0

A Novel Approach for Validation and Completeness of Protein Orthologous Groups

User Da	ata Analysis				
KusakiDI Validat Not va	B Validation ted Ilidated		Total number of species in a family 4	Percentage of Species in a Family	Percentage of Total Species 1 0 1 40 1 1 40 1 1 1 1 1 1 1 1 1 1
Upload H	layai_annotation	_v2.0.tsv			
Browse	Hayai_anno	tation_v2.0.tsv			
	Upload com	plete			
Submit					
Download	ł				
0h (1/					
Show 1	0 ᅌ entries				Search: terpene
Show 1	0 ᅌ entries queryid_pep	≑ pub_og_id ∜	uniprot_protein_name	uniprot_accession 🔶 kusakiDB_curation	Search: terpene h ≑ Perc ≑ Protein_name
Show 10	0 o entries queryid_pep AT4G16730.1	pub_og_ld	uniprot_protein_name (E)-beta-ocimene synthase, chloroplastic	uniprot_accession	Search: terpene n Perc Protein_name 80.34 Terpene synthase, N-terminal doma
Show 1 18635 20874	0 c entries queryid_pep AT4G16730.1 AT1G61120.1	pub_og_ld 62841at33090 88253at33090	uniprot_protein_name (E)-beta-ocimene synthase, chloroplastic (E,E)-geranyllinalool synthase	uniprot_accession kusakiDB_curation P0CJ43 V Q93YV0 V	Search: terpene m Perc Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma
Show 10 18635 20874 21128	0 ♀ entries queryid_pep AT4G16730.1 AT1G61120.1 AT4G13280.2	pub_og_id 62841at33090 88253at33090 91294at33090	uniprot_protein_name 4 (E)-beta-ocimene synthase, chloroplastic 6 (E,E)-geranyllinalool synthase 6 (Z)-gamma-bisabolene synthase 1 1	uniprot_accession kusakiDB_curation P0CJ43 V Q937V0 V Q9T0J9 V	Search: terpene • Perc • Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma
Show 1 18635 20874 21128 21113	• entries queryid_pep AT4G16730.1 AT1G61120.1 AT4G13280.2 AT4G13300.1	 pub_og_id 62841at33090 68253at33090 91294at33090 91294at33090 	uniprot_protein_name 4 (E)-beta-ocimene synthase, chloroplastic (E,E)-geranyllinalool synthase (Z)-gamma-bisabolene synthase 1 (Z)-gamma-bisabolene synthase 2	uniprot_accession kusakiDB_curation P0CJ43 V Q937V0 V Q9T0J9 V Q9T0K1 V	Search: terpene • Perc • Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma
Show 1 18635 20874 21128 21113 18637	0 ♀ entries queryid_pep AT4G16730.1 AT1G61120.1 AT4G13280.2 AT4G13300.1 AT3G25820.1	 pub_og_id 62841at33090 88253at33090 91294at33090 91294at33090 62841at33090 62841at33090 	uniprot_protein_name 4 (E)-beta-ocimene synthase, chloroplastic 6 (E,E)-geranyllinalool synthase 6 (Z)-gamma-bisabolene synthase 1 6 (Z)-gamma-bisabolene synthase 2 1,8-cineole synthase 1, chloroplastic	uniprot_accession kusakiDB_curation P0CJ43 V Q93YV0 V Q970J9 V Q970K1 V P0DI76 V	Search: terpene • Perc • Protein_name • 80.34 Terpene synthase, N-terminal doma • 58.12 Terpene synthase, N-terminal doma • 80.34 Terpene synthase, N-terminal doma • 80.34 Terpene synthase, N-terminal doma • 80.34 Terpene synthase, N-terminal doma
Show 1 18635 20874 21128 21113 18637 18640	••••••••••••••••••••••••••••••••••••	 pub_og_id 62841at33090 88253at33090 91294at33090 91294at33090 62841at33090 62841at33090 	uniprot_protein_name 4 (E)-beta-ocimene synthase, chloroplastic 4 (E,E)-geranyllinalool synthase 4 (Z)-gamma-bisabolene synthase 1 4 (Z)-gamma-bisabolene synthase 2 4 1,8-cineole synthase 1, chloroplastic 1,8-cineole synthase 1, chloroplastic	uniprot_accession kusakiDB_curation P0CJ43 V Q937V0 V Q9T0J9 V Q9T0K1 V P0DI76 V	Search: terpene Perc • Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma
Show 11 18635 20874 21128 21113 18637 18640 21134	0 ♀ entries queryid_pep AT4G16730.1 AT1G61120.1 AT4G13280.2 AT4G13300.1 AT3G25820.1 AT3G25830.1 AT5G44630.1	 pub_og_id 62841at33090 88253at33090 91294at33090 91294at33090 62841at33090 62841at33090 91294at33090 	uniprot_protein_name 4 (E)-beta-ocimene synthase, chloroplastic 6 (E,E)-geranyilinalool synthase 6 (Z)-gamma-bisabolene synthase 1 6 (Z)-gamma-bisabolene synthase 2 1,8-cineole synthase 1, chloroplastic 1,8-cineole synthase 1, chloroplastic 1,8-cineole synthase 1, chloroplastic Alpha-barbatene synthase 1	uniprot_accession kusakiDB_curation POCJ43 V Q93YV0 V Q970J9 V Q9T0K1 V PODI76 V Q4KSH9 V	Search: terpene • Perc • Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma
Show 11 18635 20874 21128 21113 18637 18640 211134 21118	••••••••••••••••••••••••••••••••••••	 pub_og_id 62841at33090 88253at33090 91294at33090 91294at33090 62841at33090 62841at33090 91294at33090 91294at33090 91294at33090 	uniprot_protein_name A (E)-beta-ocimene synthase, chloroplastic A (E)-garanyllinalool synthase A (Z)-gamma-bisabolene synthase 1 A (Z)-gamma-bisabolene synthase 2 A 1,8-cineole synthase 1, chloroplastic A 1,8-cineole synthase 1, chloroplastic A Alpha-barbatene synthase Alpha-humulene/(-)-(E)-beta-caryophyllene synthase	uniprot_accession kusakiDB_curation PoCJ43 V Q937V0 V Q9T0J9 V Q9T0J9 V Q9T0J9 V PoDI76 V PODI76 V Q84UU4 V	Search: terpene • Perc • Protein_name • 80.34 Terpene synthase, N-terminal doma • 58.12 Terpene synthase, N-terminal doma • 80.34 Terpene synthase, N-terminal doma
Show 11 18635 20874 21128 21113 18637 18640 21134 21118 6370	••••••••••••••••••••••••••••••••••••	 pub_og_id 62841at33090 88253at33090 91294at33090 91294at33090 62841at33090 62841at33090 91294at33090 91294at33090 91294at33090 16117at33090 	uniprot_protein_name 4 (E)-beta-ocimene synthase, chioroplastic 5 (E,E)-geranyllinalool synthase 5 (Z)-gamma-bisabolene synthase 1 5 (Z)-gamma-bisabolene synthase 2 5 1,8-cineole synthase 1, chioroplastic 5 1,8-cineole synthase 1, chioroplastic 6 Alpha-barbatene synthase 6 Alpha-humulene/(-)-(E)-beta-caryophyliene synthase 6 Amyrin synthase LUP2 5	uniprot_accession kusakiDB_curation PoCJ43 V Q937V0 V Q970J9 V Q9T0J9 V Q9T0K1 V PoDI76 V Q4KSH9 V Q8HUU4 V	Search: terpene • Perc • Protein_name 80.34 Terpene synthase, N-terminal doma 58.12 Terpene synthase, N-terminal doma 80.34 Terpene synthase, N-terminal doma

KusakiDB v1.0 Tools: Hayai-annotation v2.0

•••	KusakiDB	× +	
← → œ	۵	$f V \mid oldsymbol{0}$ localhost:6656	₪ ☆

KusakiDB v1.0

A Novel Approach for Validation and Completeness of Protein Orthologous Groups

OG Assessment OG Management OG Management User Data Hayai-annotation Plants-v2.0

Hayai-Annotation Plants v2.0 - Functional Protein Annotation for Plant Species

gnment	Max hits per query		Minimum S	Sequence Identity (%)	
	1	٢	20	50	100
	•		20 28 36	44 52 60 68 76	84 92 10
gorithm	Evalue 1e-				
Existence Level	6	٢	Minimum C	Query Coverage (%)	
ent Score			20	50	100
ant Score			20 28 36	44 52 60 68 76	8

Interface of Hayai-annotation v2.0

Submit

Download

KusakiDB v1.0 **Relevance**: Source of Orthologous **Groups for Plant** GARDEN

Re-annotation of genes registered in Plant GARDEN was performed using KusakiDB as database and Hayai-Annotation as an annotation program. Thus all entries at Plant GARDEN have a correspondent OG associated with each gene.

アノテ-

(Hayai

ZEN)

\rightarrow C' $\hat{\mathbf{u}}$	□ 🔒 https://plantgarden.jp/ja/list/t3702/genome/t3702.G001/AT2G24800.1	(110%) 🚥 🖾 🏠
🗙 Plant GARDEN	Q キーワード検索	? 使い方 ▶
Y TOP > 全植物種リスト	>Arabidopsis thaliana > t3702.G001 >遺伝子配列を見る	

		遺伝子配列の詳	細
物理上の位置	遺伝子名	CDS	AT2G24800.1
		PEP	AT2G24800.1
	ゲノム配列上の位置	Chromosome	Chr2
		Start Position	10571054
		End Position	10572636
		Strand	-
アノテーション情報	KusakiDB	KusakiDB ID	KUNI00196607
(Hayaı Annotation ZEN)		Transcript or Protein existence	NO
	OrthoDB	Protein name	Peroxidase
		OrthoDB unique gene ID	3702_0:0021ac
		OG unique ID	133645at33090
	UniProt	Protein name	Peroxidase 18
		Accession	Q9SK52
		Comment	NA
		EC	1.11.1.7
		KO ID	K00430
		KO Description	peroxidase

今後の連携への取り組み (Future assignments)

- Provide an API interface for RDF users in order to promote an easier integration of data among other databases.
- Implement conservation analysis of OGs for glycogenes identified in Plant GARDEN (using AMAI v0.2) and available at GlyCosmos (https://glycosmos.org/plantgardens/index).
- Implement further analysis of OG conservation in Plant GARDEN.

まとめ(Summary)

- KusakiDB v1.0 was developed to offer a new method to evaluate the "real" existence of a protein through OGs existence (KusakiDB validation tag).
- Besides, if an OG is assigned as "Not validated" means that until now no one found a protein or transcript. If the gene has a potential interest some researches may focus their attention in order to properly identify that transcript or protein.
- KusakiDB v1.0 may provide some tools for researchers in order to find, for example, proteins that are conserved only within a family, or in other words, find genes that have higher evolutionary rates.

